Math, asked by pavankalyan9048, 2 months ago

if x=2+√3, find the value of x^2v+ 1/x ^2​

Answers

Answered by bachchajeesingh
0

Answer:

99900

Step-by-step explanation:

hsusjskainzgzhsjakskisushaajkansuwusuysggeysjwiwiayegegehdhdhjeiwjhwhshe hshehehehshehshgdtdgwisudgfxvsjis

Answered by Salmonpanna2022
1

Step-by-step explanation:

Question:-

If x = 2 + √3, find the value of x² + 1/x²

To find:-

The value of x² + 1/x² = ?

Solution:-

Let's solve the problem

We have: x = 2+√3

1/x = 1/2+√3

The denominator is 2+√3. Multiplying the numerator and denomination by 2-√3, we get

1/2+√3 × 2-√3/2-√3

1(2-√3)/(2+√3)(2-√3)

⬤ Applying Algebraic Identity

(a+b)(a-b) = a² - b² to the denominator

We get,

2-√3 /(2)² - (√3)²

2 - √3 / 4 - 3

2 - √3 / 1

2 -√3

x + 1/x = 2+√3 + 2-√3

x + 1/x = 2 + 2

x + 1/x = 4

Squaring on both sides we get,

(x + 1/x)² = (4)²

x² + 2(x)(1/x) + (1/x)² = 16

x² + 2 + 1/x² = 16

x² + 1/x² = 16 - 2

x² + 1/x² = 14

Answer:-

Hence, the value of + 1/ = 14.

Used Formulae:-

  • (a+b)(a-b) = a² - b²

:)

Similar questions