Math, asked by pandeyanuwarshika, 10 months ago

if x =2+√3 find the value of x^3+1/x^3
please send me the pic of the solution ​

Answers

Answered by tahseen619
2

52

Step-by-step explanation:

Given:

x = 2 + √3

To find:

  \textsf{The value of } \:  \: {x}^{3}  +  \dfrac{1}{ {x}^{3} }

How to Solve:

1. We the value of (x + 1/x)

2. We have to find the value of 1/x

3. Algebra Formula

[a³ + b³ = (a+b)³- 3ab (a+b)] ---(2)

[a² - b² = (a - b)(a + b)] ---(1)

will be used.

4. Rationalizing will also required.

Solution:

x = 2 + √3

 \textsf{So,}  \: \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }  \\  \\  =  \frac{(2 -  \sqrt{3})}{(2 +  \sqrt{3})(2 -  \sqrt{3})}

Rationalizing the Denominator,

 = \frac{(2 -  \sqrt{3})}{ {(2)}^{2}  -  {( \sqrt{3})}^{2}  } \:  \: [ \text{Using 1}]\\  \\  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\   \therefore \:  \:  \:  \frac{1}{x}  = 2 -  \sqrt{3}

Now,

x +  \frac{1}{x}  =( 2 +  \sqrt{3}  ) + (2 -  \sqrt{3} ) \\  \\  = 2 + 2  +  \sqrt{3}  -  \sqrt{3}  \\  \\  = 4

Now,

 {x}^{3}  +  \frac{1}{ {x}^{3} }  \:  \:[ \text{Using 2}] \: \\  \\  = (x +  \frac{1}{x} ) {}^{3}  - 3.x. \frac{1}{x} (x +  \frac{1}{x} ) \\  \\   =  {(4)}^{3}  - 3(4) \\  \\ =  64 - 12 \\  \\  = 52

Therefore, The required answer is 52 .

Similar questions