if x = 2 + √3 , find the value of ( x² + 1 / x² )^2
( don't give unnecessary answers ) ( give correct answer only )
Attachments:
![](https://hi-static.z-dn.net/files/d9c/65a962e8959a2cb7d82a30ea818d6b4a.jpg)
Answers
Answered by
1
x = 2 + √3
x² = ( 2 + √3)²
= 2²+ 4√3 + 3
= 4 + 4√3 + 3
= 7 + 4√3
(x² + 1/x²)² = (7 +4√3 +( 1 / (7+4√3)))²
= (7+4√3)² + (2 .7+4√3.1/7+4√3) +( 1/7+4√3)²
= 7²+(4√3)²+56√3 + 2 + [1/(7²+8√3 +( 4√3)²]
= 49 + 48 + 56√3 + 2 + [1/( 97 + 56√3)]
= 97+56√3 +( 1 / (97 +56✓3) )+ 2
on substituting the values of √3, we get the answer 196
Answered by
3
Solution :-
Given that
So,
☆ On rationalizing the denominator, we get
Consider,
[☆ On substituting the values, we get]
Now,
Consider,
Hence,
More Identities to know:
- (a + b)² = a² + 2ab + b²
- (a - b)² = a² - 2ab + b²
- a² - b² = (a + b)(a - b)
- (a + b)² = (a - b)² + 4ab
- (a - b)² = (a + b)² - 4ab
- (a + b)² + (a - b)² = 2(a² + b²)
- (a + b)³ = a³ + b³ + 3ab(a + b)
- (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions
Science,
2 months ago
Accountancy,
2 months ago
Math,
2 months ago
Science,
4 months ago
Social Sciences,
4 months ago
English,
11 months ago
Math,
11 months ago
Math,
11 months ago