if x=2+√3, find the value of x²+1/x²
Answers
Answered by
1471
Heya ☺
Given that
x = 2 + √3
1/x = 1/2 + √3
= 1 × (2 - √3)/(2 + √3) (2 - √3)
= (2 - √3)/(2^2 - √3^2)
= (2 - √3)/4 - 3
= (2 - √3)
Therefore ,
x^2 = (2 + √3)
= (2)^2 + (√3)^2 + 2 × 2 × √3
= 4 + 3 + 4√3
= 7 + 4√3
1/x^2 = (2 - √3)^2
= (2)^2 + (√3)^2 - 2 × 2 × √3
= 4 + 3 - 4√3
= 7 - 4√3
x^2 + 1/x^2
= (7 + 4√3) + (7 - 4√3)
= 7 + 4√3 + 7 - 4√3
= 7 + 7 + 4√3 - 4√3
= 14
Thanks
Given that
x = 2 + √3
1/x = 1/2 + √3
= 1 × (2 - √3)/(2 + √3) (2 - √3)
= (2 - √3)/(2^2 - √3^2)
= (2 - √3)/4 - 3
= (2 - √3)
Therefore ,
x^2 = (2 + √3)
= (2)^2 + (√3)^2 + 2 × 2 × √3
= 4 + 3 + 4√3
= 7 + 4√3
1/x^2 = (2 - √3)^2
= (2)^2 + (√3)^2 - 2 × 2 × √3
= 4 + 3 - 4√3
= 7 - 4√3
x^2 + 1/x^2
= (7 + 4√3) + (7 - 4√3)
= 7 + 4√3 + 7 - 4√3
= 7 + 7 + 4√3 - 4√3
= 14
Thanks
Answered by
841
Hey mate ^_^
_______________________
Given :
x = 2 + √3
To find :
x² + 1 / x²
Solution ;
x = 2 + √3
⇒ 1 / x = 1 / 2 + √3 × 2 - √3 / 2 - √3
⇒ 1 / x = 2 - √3 / 2² - √3²
⇒ 1 / x = 2 - √3 / 4 - 3
⇒ 1 / x = 2 - √3
Now,
x + 1 / x = 2 + √3 + 2 - √3
⇒ x + 1 / x = 2 + 2
⇒ x + 1 / x = 4
And, on squaring both sides.
( x + 1 / x ) ² = (4)²
⇒ x² + 1 / x² + 2 = 16
⇒ x² + 1 / x² = 16 - 2
⇒ x² + 1 / x² = 14.
Hence,
x² + 1 / x² = 14.
_______________________
Thanks for the question!
☺️☺️☺️
_______________________
Given :
x = 2 + √3
To find :
x² + 1 / x²
Solution ;
x = 2 + √3
⇒ 1 / x = 1 / 2 + √3 × 2 - √3 / 2 - √3
⇒ 1 / x = 2 - √3 / 2² - √3²
⇒ 1 / x = 2 - √3 / 4 - 3
⇒ 1 / x = 2 - √3
Now,
x + 1 / x = 2 + √3 + 2 - √3
⇒ x + 1 / x = 2 + 2
⇒ x + 1 / x = 4
And, on squaring both sides.
( x + 1 / x ) ² = (4)²
⇒ x² + 1 / x² + 2 = 16
⇒ x² + 1 / x² = 16 - 2
⇒ x² + 1 / x² = 14.
Hence,
x² + 1 / x² = 14.
_______________________
Thanks for the question!
☺️☺️☺️
Similar questions