If X=2 + √3, find the value of x²+ 1/x²
Answers
Step-by-step explanation:
This is the long way to find the value of x² + 1/x², substitute the given x = 2 + √3 into the variable x.
x² + 1/x²
= (2 + √3)² + 1/(2 + √3)²
= [2² + 2(2)(√3) + (√3)²] + 1/[2² + 2(2)(√3) + (√3)²]
= (4 + 4√3 + 3) + 1/(4 + 4√3 + 3)
= (7 + 4√3) + 1/(7 + 4√3)
= (7 + 4√3)²/(7 + 4√3) + 1/(7 + 4√3)
= ((7 + 4√3)² + 1)/(7 + 4√3)
= (7² + 2(7)(4√3) + (4√3)² + 1)/(7 + 4√3)
= (49 + 56√3 + 48 + 1)/(7 + 4√3)
= (98 + 56√3)/(7 + 4√3)
= 14(7 + 4√3)/(7 + 4√3)
= 14
Step-by-step explanation:
Question:-
If x = 2 + √3, find the value of x² + 1/x²
To find:-
The value of x² + 1/x² = ?
Solution:-
Let's solve the problem
We have: x = 2+√3
∴ 1/x = 1/2+√3
The denominator is 2+√3. Multiplying the numerator and denomination by 2-√3, we get
➟ 1/2+√3 × 2-√3/2-√3
➟ 1(2-√3)/(2+√3)(2-√3)
⬤ Applying Algebraic Identity
(a+b)(a-b) = a² - b² to the denominator
We get,
➟ 2-√3 /(2)² - (√3)²
➟ 2 - √3 / 4 - 3
➟ 2 - √3 / 1
➟ 2 -√3
∴ x + 1/x = 2+√3 + 2-√3
x + 1/x = 2 + 2
x + 1/x = 4
Squaring on both sides we get,
(x + 1/x)² = (4)²
➟ x² + 2(x)(1/x) + (1/x)² = 16
➟ x² + 2 + 1/x² = 16
➟ x² + 1/x² = 16 - 2
➟ x² + 1/x² = 14.
Answer:-
Hence, the value of x² + 1/x² = 14.
Used Formulae:-
- (a+b)(a-b) = a² - b²
:)