If x = 2 + √3 , find the value of x² + 1/x²
Answers
Answer:
2
Step-by-step explanation:
x=2+
Therefore,
=(x+1/x)^2 - 2*x*1/x
=(x+1/x)^2 - 2 {since x*1/x = 1}
putting the values,
=(2+ + 1/2+)^2 - 2
=[(2+)^2 + 1]/2+ - 2
=[(4+2*2*+3)+1]/2+ - 2
=[(4+4+3+1]/2+ - 2
=[(8+4)/2+] - 2
=[4(2+)/2+]-2
=4(1)-2
=4-2
=2
Step-by-step explanation:
Question:-
If x = 2 + √3, find the value of x² + 1/x²
To find:-
The value of x² + 1/x² = ?
Solution:-
Let's solve the problem
We have: x = 2+√3
∴ 1/x = 1/2+√3
The denominator is 2+√3. Multiplying the numerator and denomination by 2-√3, we get
➟ 1/2+√3 × 2-√3/2-√3
➟ 1(2-√3)/(2+√3)(2-√3)
⬤ Applying Algebraic Identity
(a+b)(a-b) = a² - b² to the denominator
We get,
➟ 2-√3 /(2)² - (√3)²
➟ 2 - √3 / 4 - 3
➟ 2 - √3 / 1
➟ 2 -√3
∴ x + 1/x = 2+√3 + 2-√3
x + 1/x = 2 + 2
x + 1/x = 4
Squaring on both sides we get,
(x + 1/x)² = (4)²
➟ x² + 2(x)(1/x) + (1/x)² = 16
➟ x² + 2 + 1/x² = 16
➟ x² + 1/x² = 16 - 2
➟ x² + 1/x² = 14.
Answer:-
Hence, the value of x² + 1/x² = 14.
Used Formulae:-
- (a+b)(a-b) = a² - b²
:)