Math, asked by kumarmukesh7658133, 1 month ago

if x=2+√3,find the value of x²+1/x².​

Answers

Answered by dakshnathani06
0

Answer:

11

Step-by-step explanation:

x = 2+√3

\frac{1}{x}=2- \sqrt{3} , (by rationalizing)

(2+√3)² + (2-√3)²

= 8+3

= 11 (ANSWER)

Answered by lalnunkimahmarjoute
0

x = 2 +  \sqrt{3}

 {x}^{2}  +  \frac{1}{ {x}^{2} }  =  \frac{ {x}^{4}  + 1}{ {x}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{ {(2 +  \sqrt{3} )}^{4}  + 1}{ {(2 +  \sqrt{3} )}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = \frac{({4 + 4 \sqrt{3}  + 3})^{2} + 1} {4 + 4 \sqrt{3}  + 3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{({7 + 4 \sqrt{3}})^{2}  + 1}{7 + 4 \sqrt{3} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{49 + 56 \sqrt{3}  + 48 + 1}{7 + 4 \sqrt{3} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{98 + 56 \sqrt{3} }{7 + 4 \sqrt{3} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 14( \frac{7 + 4 \sqrt{3} }{7 + 4 \sqrt{3} } )

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = 14

Similar questions