If x = (2 - √3), find the value of (x² + 1/x²).
Answers
Answered by
3
EXPLANATION.
⇒ x = (2 - √3).
As we know that,
We can write equation as,
⇒ 1/x = 1/(2 - √3).
Rationalizes the equation, we get.
⇒ 1/x = 1/(2 - √3) x (2 + √3)/(2 + √3).
⇒ 1/x = [(2 + √3)/(2 - √3)(2 + √3)].
⇒ 1/x = [(2 + √3)/(4 - 3)].
⇒ 1/x = 2 + √3.
To find value of : (x² + 1/x²).
As we know that,
Formula of :
⇒ (a + b)² = a² + b² + 2ab.
Put the values in this equation, we get.
⇒ (x + 1/x)² = (x)² + 1/(x)² + 2(x)(1/x).
⇒ (x + 1/x)² = x² + 1/x² + 2.
⇒ [(2 - √3) + (2 + √3)]² = x² + 1/x² + 2.
⇒ [2 - √3 + 2 + √3]² = x² + 1/x² + 2.
⇒ (4)² = x² + 1/x² + 2.
⇒ 16 = x² + 1/x² + 2.
⇒ x² + 1/x² = 14.
Value of (x² + 1/x²) = 14.
Similar questions
Hindi,
8 days ago
Accountancy,
8 days ago
Math,
16 days ago
Math,
9 months ago
Geography,
9 months ago