Math, asked by sintujoseph2445, 10 months ago

If x = 2+√3 find the value of x³+1/x³​

Answers

Answered by Anonymous
5

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ value \ of \ x^{3}+\dfrac{1}{x^{3}} \ is \ 52.}

\sf\orange{Given:}

\sf{\leadsto{x=2+\sqrt3}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ x^{3}+\dfrac{1}{x^{3}}.}

\sf\green{\underline{\underline{Solution:}}}

\sf{\longmapsto{x=2+\sqrt3}}

\sf{Taking \ cube \ of \ both \ sides, \ we \ get}

\sf{\longmapsto{\therefore{x^{3}=(2+\sqrt3)^{3}}}}

\sf{\longmapsto{\therefore{x^{3}=8+3\sqrt3+12\sqrt3+18}}}

\sf{\longmapsto{\therefore{x^{3}=26+15\sqrt3...(1)}}}

\sf{\longmapsto{\dfrac{1}{x}=\dfrac{1}{2+\sqrt3}}}

\sf{\longmapsto{\therefore{\dfrac{1}{x}=\dfrac{(1)(2-\sqrt3)}{(2+\sqrt3)(2-\sqrt3)}}}}

\sf{\longmapsto{\therefore{\dfrac{1}{x}=\dfrac{2-\sqrt3}{2^{2}-(\sqrt3)^{2}}}}}

\sf{\longmapsto{\therefore{\dfrac{1}{x}=\dfrac{2-\sqrt3}{4-3}}}}

\sf{\longmapsto{\therefore{\dfrac{1}{x}=\dfrac{2-\sqrt3}{1}}}}

\sf{\longmapsto{\therefore{\dfrac{1}{x}=2-\sqrt3}}}

\sf{On \ taking \ cube \ of \ both \ sides, \ we \ get}

\sf{\longmapsto{\therefore{\dfrac{1^{3}}{x^{3}}=(2-\sqrt3)^{3}}}}

\sf{\longmapsto{\therefore{\dfrac{1}{x^{3}}=8-12\sqrt3+18-3\sqrt3}}}

\sf{\longmapsto{\therefore{\dfrac{1}{x^{3}}=26-15\sqrt3...(2)}}}

\sf{...from \ (1) \ and \ (2)}

\sf{\longmapsto{x^{3}+\dfrac{1}{x^{3}}=(26+15\sqrt3)+(26-15\sqrt3)}}

\sf{\longmapsto{\therefore{x^{3}+\dfrac{1}{x^{3}}=52}}}

\sf\purple{\tt{\therefore{The \ value \ of \ x^{3}+\dfrac{1}{x^{3}} \ is \ 52.}}}

Similar questions