Math, asked by sanhikcho74, 3 months ago

if x = 2 - √3, find the value of x³ -1/x³​

Answers

Answered by AnandJaswanth
1

Answer:

-30√3

Step-by-step explanation:

x=2-√3 1/x =2+√3

x²=7-4√3

1/x²=7+4√3

x³-1/x³ in form a³-b³ = (a-b)(a²+b²+ab)

= (x-1/x)(x²+1/x²+x.1/x)

=-2√3(14+1)=-30√3

Answered by Anonymous
3

GIVEN :-

 \\  \sf \: x = 2 -  \sqrt{3}  \\  \\

TO FIND :-

 \\  \sf \:  {x}^{3}  -  \dfrac{1}{ {x}^{3} }  \\  \\

SOLUTION :-

 \\

We know ,

 \\  \sf \: x = 2 -  \sqrt{3}  \\

Taking reciprocal ,

 \\  \sf \:  \dfrac{1}{x}  =  \dfrac{1}{2 -  \sqrt{3} }  \\

Rationalising the denominator ,

Rationalising factor is 2+√3

 \\  \sf \:  \dfrac{1}{x}  =  \dfrac{1}{2 -  \sqrt{3} }  \times  \dfrac{2 +  \sqrt{3} }{2 +  \sqrt{3} }  \\ \\   \\  \sf \:  \dfrac{1}{x}  =  \dfrac{2 +  \sqrt{3} }{(2 -  \sqrt{3})(2 +  \sqrt{3})  }  \\  \\  \\   \boxed{\sf \:  \dfrac{1}{x}  = 2 +  \sqrt{3} } \\  \\

We have ,

  • x = 2 - √3
  • 1/x = 2 + √3

So,

 \\  \sf \: x -  \frac{1}{x}  = 2  -   \sqrt{3}  - (2 +  \sqrt{3} ) \\  \\  \\  \sf \: x -  \frac{1}{x}  =  \cancel2 -  \sqrt{3}  -  \cancel2 -  \sqrt{3}  \\  \\  \\  \sf \: x -  \frac{1}{x}  =  - 2 \sqrt{3}  \\

Cubing both sides , we get..

 \\   \sf \:   {\left(x -  \frac{1}{x}  \right)}^{3}  =  {( - 2 \sqrt{3} )}^{3} \\

We know , (a - b)³ = a³ - 3a²b + 3ab² - b³

Here ,

  • a = x
  • b = 1/x

Putting values we get...

 \\  \sf \:  {x}^{3}  - 3 {x}^{2} \left(  \frac{1}{x} \right) + 3x {\left(  \frac{1}{x} \right)}^{2}  -  {\left(  \frac{1}{x} \right) }^{3}  =  - 24 \sqrt{3}  \\  \\  \\  \sf \:  {x}^{3}  - 3x +  \frac{3}{x}  -  \frac{1}{ {x}^{3} } =  - 24 \sqrt{3}   \\  \\   \\  \sf \:  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3x +  \frac{3}{x}  =  - 24 \sqrt{3}  \\  \\  \\ \sf \:  {x}^{3}  -  \frac{1}{ {x}^{3} } -   3\left(x +  \frac{1}{x}  \right)=  - 24 \sqrt{3}  \\  \\

\\  \sf \:  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3 \{2 -   \cancel{\sqrt{3}}  + 2 +   \cancel{\sqrt{3}}  \} =  - 24 \sqrt{3}  \\  \\  \\  \sf \:  {x}^{3}  -  \frac{1}{ {x}^{3} }  - 3(4) =  - 24 \sqrt{3}  \\  \\  \\  \sf \:  {x}^{3}  -  \frac{1}{ {x}^{3} }  =  - 24 \sqrt{3}  + 12 \\  \\  \\  \sf \:  {x}^{3}  -  \frac{1}{ {x}^{3} } =  - 24 \sqrt{3}   + 4 \sqrt{3}  \\  \\  \\  \boxed{ \bf \:  {x}^{3} -  \frac{1}{ {x}^{3} }  =  - 20 \sqrt{3}  }

Similar questions