Math, asked by ankitkum97partxf, 1 year ago

if x=2-√3 find the value of x3+1/x3

Answers

Answered by BrainlyQueen01
12
Hey mate !

_______________________

Given :

x = 2 - \sqrt{3}

To find :

x {}^{3} + \frac{1}{x{}^{3}}

Solution :

x = 2 - \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 + \sqrt{3}

Now,

x + \frac{1}{x} = 2 - \cancel {\sqrt{3}} + 2 + \cancel {\sqrt{3}} \\ \\ x + \frac{1}{x} = 2 + 2 \\ \\ x + \frac{1}{x} = 4

And,

On cubing both sides.

(x + \frac{1}{x} ){}^{3} = (4) {}^{3} \\ \\ x {}^{3} + \frac{1}{x{}^{3} } + 3(x + \frac{1}{x} ) = 64 \\ \\ x {}^{3} + \frac{1}{x{}^{3} } + 3 \times 4 = 64 \\ \\ x {}^{3} + \frac{1}{x{}^{3} } + 12 = 64 \\ \\ x {}^{3} + \frac{1}{x{}^{3} } = 64 - 12 \\ \\ \boxed{ \bold{ x {}^{3} + \frac{1}{x{}^{3} } = 52}}

_______________________

Thanks for the question!

☺️☺️☺️

abhilipsa2: hi bq:-)
Answered by Anonymous
6
\underline{\bold{Given:-}}

x = 2 - \sqrt{3}

\underline{\bold{To\:find:-}}

 {x}^{3} + \frac{1}{ {x}^{3} } \\

\underline{\bold{Solution:-}}

x = 2 - \sqrt{3}

 \frac{1}{x} = \frac{1}{2 - \sqrt{3} } \\ \\ \bold{On \: rationalising \: them }\\ \\ \frac{1}{x} = \frac{1}{2 - \sqrt{3} } \times \frac{2 + \sqrt{3} }{2 + \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{ {2}^{2} - {( \sqrt{3}) }^{2} } \\ \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 + \sqrt{3} \: \: \: \: \: .......(1) \\ \\
x + \frac{1}{x} = 2 - \sqrt{3} + 2 + \sqrt{3} \\ \\ x + \frac{1}{x} = 4 \: \: \: \: \: .......(2) \\ \\ \bold{On \: cubing \: both \: sides }\\ \\ \bold{{(x + \frac{1}{x})}^{3} = {4}^{3} } \\ \\

 {x}^{3} + \frac{1}{ {x}^{3} } + 3x \times \frac{1}{x} (x + \frac{1}{x} ) = 64 \\ \\ {x}^{3} + \frac{1}{ {x}^{3} } + 3(x + \frac{1}{x} ) = 64 \\ \\ from \: eq \: (2) \\ \\ {x}^{3} + \frac{1}{ {x}^{3} } + 3(4) = 64 \\ \\ {x}^{3} + \frac{1}{ {x}^{3} } = 64 - 12 \\ \\\boxed{\bold{ {x}^{3} + \frac{1}{ {x}^{3} } = 52}}

⭐HOPE IT MAY HELP YOU⭐
Similar questions