Physics, asked by TheDarkQueen, 10 months ago

If x=2+/3 find value of x²+1/x²

Answers

Answered by HariesRam
1

Answer:

given \\  \\ x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  \\  =  \frac{2 -  \sqrt{3} }{ {2}^{2}   -    { (\sqrt{3}) }^{2}  }  \\  \\  = 2 -  \sqrt{3}  \\  \\ then \: x +  \frac{1}{x}  = 4 \\  \\ now \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }   \\  \\  =  {(x +  \frac{1}{x}) }^{2}  - 2x( \frac{1}{x} ) \\  \\  =   {4}^{2}  - 2 \\  \\  = 16 - 2 \\  \\  = 14

❤️

Answered by Anonymous
8

\huge\mathfrak\blue{Answer:}

Given:

  • We have been given that
  • x = 2 +  \sqrt{3}

To Find:

  • Find the value of ( x² + 1/x² )

Solution:

We have given that

x = 2 +  \sqrt{3}

Now we will find value of 1/x

 =  >  \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }

On Rationalizing the denominator

 =  >  \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 =  >  \dfrac{1}{x}  =  \dfrac{2 - \sqrt{3}  }{(2 +  \sqrt{3} )(2 -  \sqrt{3} )}

Using [ ( a + b )( a - b ) = a² - b² ]

 =  >  \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{ {(2)}^{2}  -  {( \sqrt{3}) }^{2} }

 =  >  \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{4 - 3}

 =  >  \dfrac{1}{x}  = 2 -  \sqrt{3}

Now finding the value of ( x + 1/x ) :

 =  > x +  \dfrac{1}{x}  = (2 +  \sqrt{3} ) + (2 -  \sqrt{3} )

 =  > x +  \dfrac{1}{x}  = 4

We get the value of ( x + 1/x ) = 4

Squaring both sides we get

 =  >{( x +  \dfrac{1}{x} )}^{2}  =  {(4)}^{2}

Using [ ( a + b ) ² = a² + b² + 2ab ]

 =  >  {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 \times x \times  \dfrac{1}{x}  = 16

 =  >   {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 = 16

=  >   {x}^{2}  +  \dfrac{1}{ {x}^{2} } = 16 - 2

=  >   {x}^{2}  +  \dfrac{1}{ {x}^{2} } = 14

The value of ( x + 1/x² ) is 14

Similar questions