If x=2+√3, find (x+1/x)3
Answers
Answered by
0
Step-by-step explanation:
Given : x=2+\sqrt{3}x=2+
3
To Find : find the value of x+\frac{1}{x}x+
x
1
Solution:
x+\frac{1}{x}x+
x
1
Since x=2+\sqrt{3}x=2+
3
To find \frac{1}{x}
x
1
x=2+\sqrt{3}x=2+
3
\frac{1}{x} =\frac{1}{2 +\sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3}}
x
1
=
2+
3
1
×
2−
3
2−
3
\frac{1}{x} =\frac{2 -\sqrt{3} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} }
x
1
=
(2)
2
−(
3
)
2
2−
3
\frac{1}{x}= \frac{2 -\sqrt{3}}{4 - 3}
x
1
=
4−3
2−
3
\frac{1}{x}= 2- \sqrt{ 3}
x
1
=2−
3
Substitute the values
x+\frac{1}{x}x+
x
1
2+\sqrt{3}+2- \sqrt{ 3}2+√3 + 2 - √3 4 Hence the value of ×+1-× is 4.
Similar questions