Math, asked by amit887404, 1 year ago

If x=2+√3. Find x^3+1/x^3

Answers

Answered by ltsCuteBoy
0

Here is your answer:

x = 2 +  \sqrt{3}  \\  \\ \frac{1}{x}  = \frac{1}{2 +  \sqrt{3} }   \times  \frac{2  - \sqrt{3} }{2 -  \sqrt{3} } \\  \\  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{(2) {}^{2}  - ( \sqrt{3} ) {}^{2} } \\ \\   \frac{1}{x}  = 2 -  \sqrt{3} \\   \\x +  \frac{1}{x}    = 2 +  \sqrt{3}  + 2 -  \sqrt{3} \\  \\ x +  \frac{1}{x}  = 4 \\  \\  \tt cubing \: both \: sides  -  \\  \\ (x +  \frac{1}{x} ) {}^{3}  = (4) {}^{3}  \\  \\ x^{3}  +  \frac{1}{x^{3}} + 3(x +  \frac{1}{x} ) = 64 \\  \\ x^{3}  +  \frac{1}{x^{3} }  + 3 \times 4 = 64 \\  \\ x^{3}  +  \frac{1}{x^{3} } + 12 = 64 \\  \\ x^{3}  +  \frac{1}{x^{3} } = 64 - 12 \\  \\ x^{3}  +  \frac{1}{x^{3} } = 52

_____________

Similar questions