If x=2+√3, Find x^(3)+1/x^3
PLEASE ANSWER
Answers
Answered by
8
Answer:
52
Step-by-step explanation:
Given: x = 2 + √3.
Then,
(1/x) = (1/2 + √3) * (2 - √3/2 - √3)
= (2 - √3)/(2)² - (√3)²
= (2 - √3)/1
= 2 - √3
Now,
⇒ x + (1/x) = 2 + √3 + (2 - √3)
⇒ x + (1/x) = 4
On cubing both sides, we get
⇒ (x + 1/x)³ = 4³
⇒ x³ + 1/x³ + 3(x + 1/x) = 64
⇒ x³ + 1/x³ + 3(4) = 64
⇒ x³ + 1/x³ + 12 = 64
⇒ x³ + 1/x³ = 52
Hope it helps!
Answered by
4
Answer:
52
Step-by-step explanation:
x = 2 + √3
(1/x) = (1/2 + √3)
(1/2 + √3) * [2 - √3/2 - √3]
[2 - √3]/(2)^2 - (√3)^2
[2 - √3]/(4 - 3)
[2 - √3]
So,
x + 1/x
= 2 + √3 + 2 - √3
= 4
Cubing both sides, we get
(x + 1/x)^3 = (4)^3
x^3 + 1/x^3 + 4(x + 1/x) = 64
x^3 + 1/x^3 + 4(4) = 64
x^3 + 1/x^3 = 52
Hope it help you
Swetha02:
Congratulations for first place on leaderboard @junnusatvika!
Similar questions