if x = 2+√3 find x²+1/x²
Answers
Answered by
28
EXPLANATION.
⇒ x = 2 + √3.
As we know that,
⇒ 1/x = 1/2 + √3.
Rationalize the equation, we get.
⇒ 1/x = 1/2 + √3 x (2 - √3)/(2 - √3).
⇒ 1/x = (2 - √3)/(2 + √3)(2 - √3).
⇒ 1/x = (2 - √3)/[(2)² - (√3)²].
⇒ 1/x = (2 - √3)/(4 - 3).
⇒ 1/x = 2 - √3.
To find :
⇒ x² + 1/x².
⇒ (2 + √3)² + (2 - √3)².
⇒ 4 + 3 + 4√3 + 4 + 3 - 4√3.
⇒ 7 + 7 = 14.
⇒ x² + 1/x² = 14.
Answered by
4
Step-by-step explanation:
if x=2+√3
find = x^2 +1/x^2
then put x value in x^2 +1/x^2
(2+√3)^2 + 1/(2+√3)^2
here,a=2 and b=√3
so the formula is a^2 +b^2 +2ab
2^2 +(√3)^2 +(2×2×√3)
4+3+4√3
7+4√3
so this value put in x value
7+4√3 + 1/7+4√3
13.9+1/13.9
(193.6+1)/13.9
194.6/13.9
14
Similar questions