Math, asked by cbisht624, 9 months ago

if x=2+√3 find x²+1/x²​
movie will give correct answer I will mark the brainlist

Answers

Answered by praneetha19
0

Answer:

mark me as brainliest

Step-by-step explanation:

14

Answered by Asterinn
2

Given :

x = 2 +  \sqrt{3}

To find :

 {x}^{2}  +  \dfrac{1}{{x}^{2}  }

Formula used :

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 {(x +  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +  \dfrac{1}{{x}^{2}}  + 2

Solution :

\implies \: x = 2 +  \sqrt{3}

 \implies \dfrac{1}{x}   =  \dfrac{1}{2 +  \sqrt{3} }

 \implies \dfrac{1}{x}   =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3}}

\implies \dfrac{1}{x}   =   \dfrac{2 -  \sqrt{3} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }

\implies \dfrac{1}{x}   =   \dfrac{2 -  \sqrt{3} }{ 4-  3  }

\implies \dfrac{1}{x}   =   \dfrac{2 -  \sqrt{3} }{ 1  }

\implies \dfrac{1}{x}   = 2 -  \sqrt{3}

\implies \: x +  \dfrac{1}{x} = 2 +  \sqrt{3}  + 2 -  \sqrt{3}

\implies x +  \dfrac{1}{x} = 2 +2 +   \sqrt{3} -  \sqrt{3}

\implies x +  \dfrac{1}{x} = 4

we know :-

{(x +  \dfrac{1}{x} )}^{2}  =  {x}^{2}  +  \dfrac{1}{{x}^{2}}  + 2

\implies{(4)}^{2}  =  {x}^{2}  +  \dfrac{1}{{x}^{2}}  + 2

\implies16 - 2=  {x}^{2}  +  \dfrac{1}{{x}^{2}}

\implies{x}^{2}  +  \dfrac{1}{{x}^{2}}   = 16 - 2

\implies{x}^{2}  +  \dfrac{1}{{x}^{2}}   = 14

Answer : 14

_____________________

\large\bf\blue{Additional-Information}

\implies{(a+b)^2 = a^2 + b^2 + 2ab}

\implies{(a-b)^2 = a^2 + b^2 - 2ab}

\implies{(a+b)^3 = a^3 + b^3 + 3ab(a + b)}

\implies{(a-b)^3 = a^3 - b^3 - 3ab(a-b)}

\implies{(a^3+b^3)= (a+b)(a^2 - ab + b^2)}

\implies{(a^3-b^3)= (a-b)(a^2 + ab + b^2)}

______________________

Similar questions