Math, asked by pratyush7033, 1 year ago

If x=2+^3 ,findx^3+1/x^3​

Attachments:

Answers

Answered by 200t
1

Answer:

 <marquee >

 \huge  \star \: \mathfrak \color{green}{Answer} \color{black} \:  \star

 </marquee >

Step-by-step explanation:

HERE....

 x  = 2+  \sqrt{3}

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

RATIONALIZE THE DENOMINATOR

 \frac{1}{x} = \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{1}

NOW ... COMING BACK TO THE PROVE

 {x}^{3} +  \frac{1}{ {x}^{3} }

  = {(2 +  \sqrt{3}) }^{2}  + {(2 -  \sqrt{3} )}^{2}  \\  = (4 + 3 +  4\sqrt{3} ) +( 4 + 3 -  4\sqrt{3} ) \\  = 7 +  4\sqrt{3}  + 7 -  4\sqrt{3} \\  = 7 + 7 \\  = 14

 <marquee scrollamount="300">

⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️

 </marquee >

UR ANSWER IS .....14

...✔️✔️⚡

Answered by sgstheboss262
0

Answer:

14

Step-by-step explanation:

Similar questions