Math, asked by Rajareshika, 6 months ago

.If (x +2/3 ) is a factor of the polynomial p(x) = 3x^4 – 4x^3– ax + 2 then find the value of ‘a’?

Onlty right answers pls

Answers

Answered by Anonymous
5

[tex] \pink{given : } \\  \\ (x +  \frac{2}{3} ) \:  \: is \:  \:  \: a \:  \:  \: factor \:  \:  \: of \:  \:  \: equation \\  \\ 3 {x}^{4}  - 4 {x}^{3}  - ax + 2 = 0 \\  \\ </p><p>\red{to \:  \:  \: find : } \\  \\ value \:  \:  \: of \:  \:  \: (\pink{a}</p><p>) \\  \\ \green{solution : } \\  \\ </p><p>\pink{put} \\  \\ x +  \frac{2}{3}  = 0 \\  \\ x =  \frac{ - 2}{3}  \\  \\ </p><p>\blue{put \:  \:  \: this \:  \:  \: value \:  \:  \: in \:  \:  \: \:main \:  \:  \: equation} \\  \\ 3(\pink{ { (\frac{ - 2}{3} })^{4} }</p><p>) - 4(\pink{  (\frac{ { - 2}^{3} }{ {3}^{3} }  )}</p><p>) - a \times \pink{ \frac{ - 2}{3} } + 2 = 0</p><p></p><p> \\  \\ 3 \times  \frac{16}{81}   + 4 \times  \frac{8}{27}  +  \frac{2a}{3}  + 2 = 0 \\  \\  \frac{16}{27}  +  \frac{32}{27} </p><p> +  \frac{2a}{3}  + 2 = 0 \\  \\  \frac{16 + 32}{27}  +  \frac{2a}{3}  + 2 = 0 \\  \\  \frac{48}{27}  +  \frac{2a}{3}  + 2 = 0 \\  \\ \pink{multiply \:  \:  \: by \:  \:  \: 27}</p><p> \\  \\  \frac{48}{27}  \times 27 +  \frac{2a}{3}  \times 27 + 2 \times 27 = 0 \\  \\ 48 + 2a \times 9 + 54 = 0 \\  \\ 18a + 102 = 0 \\  \\ 18a =  - 102 \\  \\ a =  \frac{ - 102}{18}  \\  \\ a =  \frac{ - 51}{9}  \\  \\ a =  \frac{ - 17}{3}  \\  \\ \pink{hence} \\  \\ </p><p>\red{a =\blue{ \frac{ - 17}{3} }</p><p> }</p><p>

[/tex]

Answered by Brainlyboy00
0

Answer:

here is your answer dear friend

Attachments:
Similar questions