If x=2+√3 the value of( x)^2+1/(x)^2 is
Answers
Answered by
1
Answer:
14
Step-by-step explanation:
x = 2 + √3
1/x = 1/2 + √3
= 1 × (2 - √3)/(2 + √3) (2 - √3)
= (2 - √3)/(2^2 - √3^2)
= (2 - √3)/4 - 3
= (2 - √3)
x^2 = (2 + √3)
= (2)^2 + (√3)^2 + 2 × 2 × √3
= 4 + 3 + 4√3
= 7 + 4√3
1/x^2 = (2 - √3)^2
= (2)^2 + (√3)^2 - 2 × 2 × √3
= 4 + 3 - 4√3
= 7 - 4√3
x^2 + 1/x^2
= (7 + 4√3) + (7 - 4√3)
= 7 + 4√3 + 7 - 4√3
= 7 + 7 + 4√3 - 4√3
= 14
Answered by
0
Answer:
this is the answer
please be care full while Doing this sum
Attachments:
Similar questions