Math, asked by pgmithun1384, 10 months ago

If x = 2+√3 then 1/x

Answers

Answered by akanshaagrwal23
2

Answer:

ko

Step-by-step explanation:

have you got answer thanks for support

Attachments:
Answered by Abhishek474241
2

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • x = 2+√3

{\sf{\green{\underline{\large{To\:find}}}}}

  • 1/x

{\sf{\pink{\underline{\Large{Explanation}}}}}

X= 2+√3

Then

1/x = 1/{2+√3}

We have 2 rationalize it

1/x = 1/{2+√3}

=>1/x = 1/{2+√3} × {2-√3} /{2-√3}

=>1/x = {2-√3}/1

Additional Information

=>x + 1/x = 2-√3 + 2+√3

=>x + 1/x =4

We know that

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

Therefore

\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

Solving

\tt{X+\dfrac{1}{X}}=4

Both side squaring

\tt{(X+\dfrac{1}{X})^2}=(4)²

\implies\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}=16

\implies\tt{16=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

\implies\tt{16=X^2+\dfrac{1}{X^2}+2}

\implies\tt{16-2=X^2+\dfrac{1}{X^2}}

\implies\tt{14=X^2+\dfrac{1}{X^2}}

Now

\tt{X^3+\dfrac{1}{X^3}}

Formula used

\implies\tt{X^3+\dfrac{1}{X^3)}=(X+\dfrac{1}{x})(X^2+\dfrac{1}{X^2}-\frac{1}{X}\times{X)}}

utting value

\implies\tt{X^3+\dfrac{1}{X^3}={4}(14-1)}

\implies\tt{X^3+\dfrac{1}{X^3}={4}(13)}

\implies\tt{X^3+\dfrac{1}{X^3}={52}}

Similar questions