If x = 2 + √3, then find 1/x
Answers
Answer:
1 / x = ( 2 - √3 )
Step-by-step explanation:
Given----> x = 2 + √3
To find ---> Value of 1 / x.
Solution---> ATQ,
x = 2 + √3
Now we have to find value of 1 / x , which is reciprocal of x .
1 / x
Putting value of x in it , we get,
= 1 / ( 2 + √3 )
Now we rationalize the denominator by multiplying by the conjugate of denominator in the numerator and denominator which is
( 2 - √3 )
= ( 2 - √3 ) / ( 2 + √3 ) ( 2 - √3 )
We know that, a² - b² = ( a + b ) ( a - b ) , applying it here , we get,
= ( 2 - √3 ) / { ( 2 )² - ( √3 )² }
= ( 2 - √3 ) / ( 4 - 3 )
= ( 2 - √3 ) / 1
1 / x = ( 2 - √3 )
Additional information--->
1) ( a + b )² = a² + b² + 2ab
2) ( a - b )² = a² + b² - 2ab
3) a² - b² = ( a + b) ( a - b )
4) ( a + b )³ = a³ + b³ + 3ab ( a + b )
5) ( a - b )³ = a³ - b³ - 3ab ( a - b )