Math, asked by kelleyevelyn710, 9 months ago

If x= 2+ √3 then find out
(I) x^4+1/x^4​

Answers

Answered by cherryred
4

Answer:

194

I really hope it helps.

Attachments:
Answered by visheshagarwal153
8

Step-by-step explanation:

\sf x = 2+ \sqrt{3} \\ \\ \sf \dfrac{1}{x}= \dfrac{1}{2+ \sqrt{3}}

 \\ \sf \underline{On \: Rationalising \: we \: will \: get:-}

 \sf \implies \dfrac{1}{2+ \sqrt{3}} \times \dfrac{2- \sqrt{3}}{2- \sqrt{3}}

 \sf \implies \dfrac{2- \sqrt{3}}{(4)^2 - ( \sqrt{3} ) ^2} = \dfrac{ 2- \sqrt{3}}{4-3}=2 - \sqrt{3}

 \sf \implies \dfrac{1}{x}= 2- \sqrt{3}

\sf Squaring \: x+ \dfrac{1}{x} \: will \: give :-

\sf \implies (x+ \dfrac{1}{x})^2

 \sf We \: know \: that,

\sf (a+b)^2=a^2+b^2+2ab

\sf Using \: this \: identity,

 \sf (x+ \dfrac{1}{x})^2=(x)^2+ (\dfrac{1}{x})^2+2 \times x \times \dfrac{1}{x}

\sf \implies (x+ \dfrac{1}{x})^2= (2+ \sqrt{3})^2 + (2- \sqrt{3})^2+2

 \sf \implies (x+ \dfrac{1}{x})^2=( (2)^2+(\sqrt{3})^2+2 \times 2 \times \sqrt{3})+( {(2)}^{2}+ {(\sqrt{3})}^{2}-2 \times 2 \times \sqrt{3})+2 \\ \\ \sf {(x+ \dfrac{1}{x})}^{2}=(4+3+4 \sqrt{3})+(4+3-4 \sqrt{3})+2 \\ \\ \sf \implies {(x+ \dfrac{1}{x})}^{2}=7+7+2 \\ \\ \sf \implies (x+ \dfrac{1}{x})^2=16

 \sf \implies 16= x^2 + \dfrac{1}{x^2} + 2 \\ \\ \sf \implies 16-2=x^2+ \dfrac{1}{x^2} \\ \\ \sf \implies x^2+ \dfrac{1}{x^2}=14

\sf Squaring \: x^2 + \dfrac{1}{x^2} \: will \: give :-

\sf (x^2+ \dfrac{1}{x^2})^2

\sf x^4 + \dfrac{1}{x^4}+2= (x^2+ \dfrac{1}{x^2})^2 \\ \\ \sf \implies x^4 + \dfrac{1}{x^4}= ( x^2 + \dfrac{1}{x^2})^2-2

\longmapsto \sf x^4+ \dfrac{1}{x^4}=(14)^2-2 \\ \\ \sf \longmapsto x^4+ \dfrac{1}{x^4}=196-2 \\ \\ \sf \longmapsto x^4 + \dfrac{1}{x^4}=194

Hope it helps.

Mark cherryred as Brainliest.

Similar questions