Math, asked by faisalbuttmuhammad63, 3 months ago

if x=2+√3 then find the value of
x -  \frac{1}{x}
and also
(x -  \frac{1}{x} )^{2}

Answers

Answered by Anonymous
35

Given

\sf\to x = 2+ \sqrt{3}

To Find

\sf\to x-\dfrac{1}{x}

\sf\to\bigg( x-\dfrac{1}{x}\bigg)^2

Now Take

\sf\to x = 2+ \sqrt{3}

\sf\to \dfrac{1}{x} = \dfrac{1}{2+\sqrt{3} }

Now using Rationalize the denominator

\sf\to \dfrac{1}{x} = \dfrac{1}{2+\sqrt{3} }

\sf\to \dfrac{1}{x} = \dfrac{1}{2+\sqrt{3} }\times\dfrac{2-\sqrt{3} }{2-\sqrt{3} }

\sf\to \dfrac{1}{x} = \dfrac{2-\sqrt{3} }{(2^2-(\sqrt{3})^2) }

\sf\to \dfrac{1}{x} = \dfrac{2-\sqrt{3} }{4-{3} }=2-\sqrt{3}

Now put the value

\sf\to x-\dfrac{1}{x}

We get

\sf\to 2+\sqrt{3} -(2-\sqrt{3} )

\sf\to 2+\sqrt{3} -2+\sqrt{3}

\sf\to 2\sqrt{3}

And

\sf\to\bigg( x-\dfrac{1}{x}\bigg)^2

We Have

\sf\to x-\dfrac{1}{x}=2\sqrt{3}

\sf\to\bigg( x-\dfrac{1}{x}\bigg)^2 = (2\sqrt{3} )^2= 4\times3=12

Answer

\sf\to x-\dfrac{1}{x}=2\sqrt{3}

\sf\to\bigg( x-\dfrac{1}{x}\bigg)^2 =12

Answered by Anonymous
22

Given :-

x = 2+√3

To Find :-

x - 1/x

\sf\bigg(x - \dfrac{1}{x} \bigg)^{2}

Solution :-

At first taking the reciprocal

\bf \dfrac{1}{x} = \dfrac{1}{2 + \sqrt{3}}

Now,

By rationalize the denominator

\tt \dfrac{1}{x}= \dfrac{1}{2+\sqrt{3}}  \times \dfrac{2-\sqrt{3}}{2-\sqrt{3} }

\tt\dfrac{1}{x}=\dfrac{1 \times 2+\sqrt{3}}{2 - \sqrt{3}\times 2 - \sqrt{3}}

\tt \dfrac{1}{x}  = \dfrac{2-\sqrt{3} }{(2^{2}-\sqrt{3} ^{2})}

\tt \dfrac{1}{x} = \dfrac{2-\sqrt{3}}{4 -3}

\sf \dfrac{1}{x} = \dfrac{1 - \sqrt{3}}{2 - 3}

\sf x = 2-\sqrt{3}

Finding x - 1/x

 \sf \bigg(x - \dfrac{1}{x}\bigg) = 2 + \sqrt{3} - (2 - \sqrt{3})

 \sf = 2 - 2 + \sqrt{3} + \sqrt{3}

 \sf 2\sqrt{3}

\tt \bigg\lgroup x - \dfrac{1}{x}\bigg\rgroup^{2} = (2\sqrt{3})^{2}

\tt \bigg\lgroup x - \dfrac{1}{x}\bigg\rgroup^{2} = 2^2 \times \sqrt{3}^{2}

\tt = 4 \times 3 =12

Similar questions