Math, asked by kavya1120, 11 months ago

if x=2+√3, then find the value of x^3+1/x^3​

Answers

Answered by RvChaudharY50
12

\color {red}\huge\bold\star\underline\mathcal{Question:-} we have to Find + 1/ ?

\huge\boxed{\fcolorbox{cyan}{grey}{Solution:--}}

x = 2+3 (Given)

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  = 2 -  \sqrt{3}

so,

x +  \frac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}  = 4

x \times  \frac{1}{x}  = 1

Now we know that ,

\large\red{\boxed{\sf </strong><strong>{a}^{3}</strong><strong>\</strong><strong>:</strong><strong>+</strong><strong>\</strong><strong>:</strong><strong>{b}^{3}</strong><strong>\</strong><strong>:</strong><strong>=</strong><strong>\</strong><strong>:</strong><strong>(a + b)^{3}  - </strong><strong>\</strong><strong>:</strong><strong>3ab(a + b)</strong><strong>}}

Putting all values we get,

  {x}^{3}  +  \frac{1}{ {x}^{3} }  = (x +  \frac{1}{x} )^{3}  - 3(x +  \frac{1}{x} ) \\  \\  \\   {x}^{3}  +  \frac{1}{ {x}^{3} } \:  =  {4}^{3}  - 3 \times 4 = 52

\bold{\boxed{\boxed{ADDITIONAL\:BRAINLY\:INFORMATION\:-:}}}

[1] ( a + b )² = a² + 2ab + b²

[2] ( a – b )² = a² – 2ab + b²

[3] ( a + b )³ = a³ + 3a² b + 3ab² + b³

[4] ( a – b )³ = a ³ – 3a² b + 3ab² – b³

[5] ( a + b )( a ² - ab + b² ) = a³ + b³

[6] ( a – b )( a ² + ab + b² ) = a³ – b³

Similar questions