Math, asked by palak7216, 6 months ago

If x = 2- √3, then find the value of x^3-1/x^3 . 



Answers

Answered by EnchantedBoy
4

Answer:

x^{3}-1/x^{3}=\sqrt[-30]{3}

Step-by-step explanation:

Given:

x=2-\sqrt{3}

So,

By rationalizing the denominators, we get,

⇒[1(2+\sqrt{3})]/[(2-\sqrt{3})(2+\sqrt{3})]

⇒[(2+\sqrt{3})]/[(2^{2})-(\sqrt{3})^{2}]

⇒[(2+\sqrt{3})]/[4-3]

⇒2+\sqrt{3}

Now,

x-1/x=2-\sqrt{3}-2-\sqrt{3}

⇒-2\sqrt{3}

Let us cube on both sides, we get,

(x-1/x)^{3}=(-2\sqrt{3})^{3}

x^{3}-1/x^{3}-3(x)(1/x)(x-1/x)=\sqrt[24]{3}

x^{3}-1/x^{3}-3(-2/\sqrt{3})=\sqrt[-24]{3}

x^{3}-1/x^{3}+\sqrt[6]{3}=\sqrt[-24]{3}

x^{3}-1/x^{3}=\sqrt[-24]{3}-\sqrt[6]{3}

⇒\sqrt[-30]{3}

Hence,

x^{3}-1/x^{3}=\sqrt[-30]{3}

Hope it helps.

MARK ME BRAINLIST...........

Answered by Anonymous
3

Answer:

sorry bt pls downloaded doubt nut u vill get

Similar questions