Math, asked by meena748, 9 months ago

If x = 2 +√3 then find the value of x² + 1/x²

Answers

Answered by Sudhir1188
8

ANSWER:

  • Value of x²+1/x² = 14

GIVEN:

  • x = 2+√3

TO FIND:

  • Value of x² + 1/x².

SOLUTIOÑ:

=> x = 2+√3

 \implies \:  \dfrac{1}{x}  =  \dfrac{1}{2  +  \sqrt{3} }  \\  \\  \implies \:  \dfrac{1}{x}   =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2  -   \sqrt{3} }{2  -   \sqrt{3} }  \\  \\  \implies \:  \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \implies \:  \dfrac{1}{x}  = 2 -  \sqrt{3}

Now:

 = x {}^{2}  +  \dfrac{1}{x {}^{2} }  \\  \\  = (2 +  \sqrt{3} ) {}^{2}  + (2 -  \sqrt{3} ) {}^{2}  \\  = 4 + 3 + 4 \sqrt{3}  + 4 + 3 - 4 \sqrt{3}  \\  = 14

Value of x²+1/x² = 14

Answered by Anonymous
8

\huge\mathfrak{Answer:}

Given:

  • We have been given that x = 2 +√3 .

To Find:

  • We need to find the value of x² + 1/x².

Solution:

It is given that x = 2 + √3

 \implies\sf{ \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} } }

 \implies\sf{  \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{ {2}^{2} -  { (\sqrt{3} )}^{2}  } }

[Using (a - b)(a + b) = a² - b²]

 \implies\sf{ \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{4 - 3} }

 \implies\sf{ \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{1} }

Now,

\sf{x +  \dfrac{1}{x}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3} }

\implies\sf{x +  \dfrac{1}{x}  = 4}

Now, we need to find the value of x² + 1/x², we have

 \sf{ {(x +  \dfrac{1}{x}) }^{2}  = ( {4}^{2} )}

 \implies\sf{ {x}^{2}  +  \dfrac{1}{ {x}^{2} }  + 2 = 16}

\implies\sf{ {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 16 - 2}

\implies\sf{ {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 14}

Hence, the value of x² + 1/x² is 14.

Similar questions