Math, asked by aditigangrade06, 5 months ago

If x= 2+ ✓3
then
find
the value of x² + 1 /x²

Answers

Answered by Aryan0123
17

Given:

  • x = 2 + √3

To find:

\bullet \quad \sf{x^{2} + \dfrac{1}{x^{2} }}

Method:

\sf{\dfrac{1}{x} = \dfrac{1}{2+\sqrt{3}} \times \dfrac{2 - \sqrt{3} }{2 - \sqrt{3} } = 2 - \sqrt{3} }

Now let us find x + 1/x

⇒ x + 1/x = 2 + √3 + 2 - √3

x + 1/x = 4

Squaring on both sides,

(x + 1/x)² = 4²

\implies \sf{x^{2} + \dfrac{1}{x^{2}} + 2(x)(\dfrac{1}{x}) = 16}\\\\\\\implies \sf{x^{2} + \dfrac{1}{x^{2}}+ 2= 16}\\\\\\\implies \sf{x^{2} + \dfrac{1}{x^{2}} = 16 - 2}\\\\\\\implies \boxed{\bf{x^{2} + \dfrac{1}{x^{2} } = 14 }}

The algebraic identity used here is

(a + b)² = a² + b² + 2ab

Similar questions