If x=2 + √3,then find the value of x² + 1/x².
Answers
Answered by
5
Given that
x = 2 + √3
1/x = 1/2 + √3
= 1 × (2-√3)/(2 + √3)(2-√3)
= (2-√3)/(2^2 -√3^2)
= (2-√3)/4 - 3 =
= (2-√3)
Therefore,
x² = (2+√3)
(2)² + (√3)² + 2×2× √3 =
= 4 + 3 + 4√3
= 7+ 4√3
1/x²=(2-√3)²
= (2)² + (√3)² - 2×2× √3
= 4 + 3 - 4√3
= 7 - 4√3
x²+1/x²
= (7 + 4√3) + (7 - 4√3)
= 7+ 4√3+7-4√3
= 7 + 7 + 4√3 - 4√3
= 14
- I Hope it's Helpful My Friend.
Answered by
1
Step-by-step explanation:
Given that
x = 2 + √3
1/x = 1/2 + √3
= 1 × (2-√3)/(2 + √3)(2-√3)
= (2-√3)/(2^2 -√3^2)
= (2-√3)/4 - 3 =
= (2-√3)
Therefore,
x² = (2+√3)
(2)² + (√3)² + 2×2× √3 =
= 4 + 3 + 4√3
= 7+ 4√3
ANSWER
Similar questions
Math,
1 month ago
Biology,
1 month ago
English,
1 month ago
English,
2 months ago
Biology,
2 months ago
Social Sciences,
10 months ago
Social Sciences,
10 months ago
English,
10 months ago