Math, asked by al688027, 7 months ago

if x = 2+√3 then find the volume of (x-1/x)3​

Answers

Answered by DrNykterstein
48

Given :-

x = 2 + √3

To Find :-

(x - 1/x)³

Solution :-

Given,

x = 2 + √3 ...(1)

So, Let's find the value of 1/x,

⇒ 1/x = 1/(2 + √3)

Rationalising the denominator,

⇒ 1/x = { 2 - √3 } / (2 + √3)(2 - √3)

⇒ 1/x = (2 - √3) / (4 - 3)

[∴ (a - b)(a + b) = - b² ]

1/x = 2 - 3 ...(2)

We have to find the value of (x + 1/x)³, So

Subtracting (2) from (1) to get x - 1/x

⇒ x - 1/x = 2 + √3 - (2 - √3)

⇒ x - 1/x = 2 + √3 - 2 + √3

x - 1/x = 23

Now, Raising to the power of 3,

⇒ (x - 1/x)³ = (2√3)³

⇒ (x - 1/x)³ = 8 × 3 × √3

(x - 1/x)³ = 243

Hence, The value of (x - 1/x)³ is 243.

Answered by sandy1816
0

Answer:

given

x = 2 +  \sqrt{3}

we can Write

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\

rationalizing denominator we get

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 -  \sqrt{3}

Now

x - \frac{1}{x}  = 2 +  \sqrt{3}  - 2 + \sqrt{3}  \\  \\ x -  \frac{1}{x}  = 2\sqrt{3}

cubing both sides we get

( {x -  \frac{1}{x} })^{3}  = ( {2 \sqrt{3} })^{3}  \\  \\ ( {x -  \frac{1}{x} })^{3 }  = 24 \sqrt{3}

Similar questions