if x = 2+√3 then find the volume of (x-1/x)3
Answers
Answered by
48
Given :-
▪ x = 2 + √3
To Find :-
▪ (x - 1/x)³
Solution :-
Given,
⇒ x = 2 + √3 ...(1)
So, Let's find the value of 1/x,
⇒ 1/x = 1/(2 + √3)
Rationalising the denominator,
⇒ 1/x = { 2 - √3 } / (2 + √3)(2 - √3)
⇒ 1/x = (2 - √3) / (4 - 3)
[∴ (a - b)(a + b) = a² - b² ]
⇒ 1/x = 2 - √3 ...(2)
We have to find the value of (x + 1/x)³, So
Subtracting (2) from (1) to get x - 1/x
⇒ x - 1/x = 2 + √3 - (2 - √3)
⇒ x - 1/x = 2 + √3 - 2 + √3
⇒ x - 1/x = 2√3
Now, Raising to the power of 3,
⇒ (x - 1/x)³ = (2√3)³
⇒ (x - 1/x)³ = 8 × 3 × √3
⇒ (x - 1/x)³ = 24√3
Hence, The value of (x - 1/x)³ is 24√3.
Answered by
0
Answer:
given
we can Write
rationalizing denominator we get
Now
cubing both sides we get
Similar questions
English,
3 months ago
Social Sciences,
3 months ago
Computer Science,
7 months ago
Social Sciences,
7 months ago
Math,
1 year ago
English,
1 year ago