Math, asked by avaneesh94, 10 months ago

If x = 2 + √3, then find
x+1/x​

Answers

Answered by abhi569
1

Answer:

4

Step-by-step explanation:

Here,

   x = 2 + √3

⇒ 1 / x = 1 / ( 2 + √3 )

   Multiply as well as divide RHS by 2 - √3

⇒ 1 / x = ( 2 - √3 ) / ( 2 + √3 )( 2 - √3 )

   Using ( a + b )( a - b ) = a^2 - b^2 for denominator of RHS

⇒ 1 / x = ( 2 - √3 ) / ( 2^2 - √3 ^2 )

⇒ 1 / x = ( 2 - √3 ) / ( 4 - 3 )

⇒ 1 / x = ( 2 - √3 ) / 1

⇒ 1 / x = 2 - √3

  Then,

⇒ x + 1 / x

⇒ ( 2 + √3 ) + ( 2 - √3 )

⇒ 2 + √3 + 2 - √3

⇒ 2 + 2

⇒ 4

Answered by lenapramod
0

Answer:

x+1/x​= 4+√3

Step-by-step explanation:

x = 2 + √3

1/x=1/2+√3=1(2+√3)/(2+√3)²

                 =2+√3/4+3+2*2*√3

                 =2+√3/7+4√3

                 =2+1*√3/7+2*2*√3

                 =2/7+4

                1/x =2/11  

x+1/x= 2+√3+2/11

        =2+2/11+√3

        =22+2/11+√3

        =11*2+2/11+√3

        =4+√3

Similar questions