If x = 2 + √3, then find
x+1/x
Answers
Answered by
1
Answer:
4
Step-by-step explanation:
Here,
x = 2 + √3
⇒ 1 / x = 1 / ( 2 + √3 )
Multiply as well as divide RHS by 2 - √3
⇒ 1 / x = ( 2 - √3 ) / ( 2 + √3 )( 2 - √3 )
Using ( a + b )( a - b ) = a^2 - b^2 for denominator of RHS
⇒ 1 / x = ( 2 - √3 ) / ( 2^2 - √3 ^2 )
⇒ 1 / x = ( 2 - √3 ) / ( 4 - 3 )
⇒ 1 / x = ( 2 - √3 ) / 1
⇒ 1 / x = 2 - √3
Then,
⇒ x + 1 / x
⇒ ( 2 + √3 ) + ( 2 - √3 )
⇒ 2 + √3 + 2 - √3
⇒ 2 + 2
⇒ 4
Answered by
0
Answer:
x+1/x= 4+√3
Step-by-step explanation:
x = 2 + √3
1/x=1/2+√3=1(2+√3)/(2+√3)²
=2+√3/4+3+2*2*√3
=2+√3/7+4√3
=2+1*√3/7+2*2*√3
=2/7+4
1/x =2/11
x+1/x= 2+√3+2/11
=2+2/11+√3
=22+2/11+√3
=11*2+2/11+√3
=4+√3
Similar questions
Science,
5 months ago
Math,
5 months ago
Math,
5 months ago
Computer Science,
10 months ago
Economy,
1 year ago