Math, asked by tharun2710, 2 months ago

If x=2+√3 then
 {x}^{2}   +  \frac{1}{ {x}^{2} }  - 4(x +  \frac{1}{x} )


Answers

Answered by ItzMeMukku
13

Hey mate!

_______________________

Given :

x = 2 + \sqrt{3}

To find :

x + \frac{1}{x}

Solution :

\begin{gathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 - \sqrt{3} \end{gathered}

Now,

\begin{gathered}x + \frac{1}{x} \\ \\ = 2 + \sqrt{3} + 2 - \sqrt{3} \\ \\ = 2 + 2 \\ \\ = 4\end{gathered}

_______________________

Thanks for the question !

☺️☺️☺️

Similar questions