Math, asked by Anonymous, 6 months ago

If x= 2- √3 , then value of ( x- 1/x )​

Answers

Answered by bson
9

Step-by-step explanation:

1/x = 1/2-sqrt3

multiply numerator and denominator with 2+sqrt3

1/x = 2+sqrt3/ ( 2-sqrt3 × 2+sqrt3)

=2+sqrt3/2²-sqrt3²

= 2+sqrt3/(4-1)

= 2+sqrt3

x-1/x = 2-sqrt3 -2-sqrt3 = -2 sqrt 3

Answered by Asterinn
3

Given :

  • x= 2- √3

To find :

  • x- 1/x

Solution :

 \sf  \implies x= 2-  \sqrt{3}

\sf  \implies  \dfrac{1}{x} =  \dfrac{1}{2-  \sqrt{3} }

\sf  \implies  \dfrac{1}{x} =  \dfrac{1}{2-  \sqrt{3} }  \times \dfrac{2 +   \sqrt{3}}{2 +   \sqrt{3} }

\sf  \implies  \dfrac{1}{x} =   \dfrac{2 +   \sqrt{3}}{ {(2)}^{2}  -   {(\sqrt{3})}^{2}  }

\sf  \implies   \dfrac{2 +   \sqrt{3}}{ {(2)}^{2}  -   {(\sqrt{3})}^{2}  } =   \dfrac{2 +   \sqrt{3}}{ 4  -   3  }

\sf  \implies    \dfrac{2 +   \sqrt{3}}{ 4  -   3  } =   \dfrac{2 +   \sqrt{3}}{ 1  }

\sf  \implies    \dfrac{1}{ x  } =   \dfrac{2 +   \sqrt{3}}{ 1  }

 \sf  \implies x - \dfrac{1}{ x  } =   2 -  \sqrt{3} - 2-\sqrt{3}

 \sf  \implies x -    \dfrac{1}{ x  } =  2 \sqrt{3}

Answer : -2√3

Similar questions