if x=2-√3, then what is x²+1/x²
Answers
Answered by
7
x = 2-√3
fill the value in
x²+1/x²
use formula (a-b)²= a²+b²-2ab
=x²+1 / x²
=(2-√3)² + 1/(2-√3)²
=(2)²+(√3)²-2(2)(√3) +1 / (2)²+(√3)²-2(2)(√3)
= 4+3-4√3+1 / 4+3+-4√3
= 8-4√3 / 7-4√3
= 4(2-√3) / 7-4√3(common)
fill the value in
x²+1/x²
use formula (a-b)²= a²+b²-2ab
=x²+1 / x²
=(2-√3)² + 1/(2-√3)²
=(2)²+(√3)²-2(2)(√3) +1 / (2)²+(√3)²-2(2)(√3)
= 4+3-4√3+1 / 4+3+-4√3
= 8-4√3 / 7-4√3
= 4(2-√3) / 7-4√3(common)
9552688731:
heya make me brainliest
Answered by
2
Given x=2−3–√x=2−3
Find x2−x−2x2−x−2
x2−x−2=x2−1x2x2−x−2=x2−1x2
x2=(2−3–√)2=4−43–√+3=7−43–√x2=(2−3)2=4−43+3=7−43
x2−x−2=7−43–√−17−43–√x2−x−2=7−43−17−43
Use the difference of squares trick to rationalize the denominator.
x2−x−2=7−43–√−7+43–√(7−43–√)(7+43–√)x2−x−2=7−43−7+43(7−43)(7+43)
=7−43–√−7+43–√(49−16⋅3)=7−43−7+43(49−16⋅3)
=7−43–√−7+43–√(49−48)=7−43−7+43(49−48)
=7−43–√−(7+43–√)=7−43−(7+43)
=7−43–√−7−43–√=7−43−7−43
=−83–√
Find x2−x−2x2−x−2
x2−x−2=x2−1x2x2−x−2=x2−1x2
x2=(2−3–√)2=4−43–√+3=7−43–√x2=(2−3)2=4−43+3=7−43
x2−x−2=7−43–√−17−43–√x2−x−2=7−43−17−43
Use the difference of squares trick to rationalize the denominator.
x2−x−2=7−43–√−7+43–√(7−43–√)(7+43–√)x2−x−2=7−43−7+43(7−43)(7+43)
=7−43–√−7+43–√(49−16⋅3)=7−43−7+43(49−16⋅3)
=7−43–√−7+43–√(49−48)=7−43−7+43(49−48)
=7−43–√−(7+43–√)=7−43−(7+43)
=7−43–√−7−43–√=7−43−7−43
=−83–√
Similar questions