Math, asked by ayushranjan339, 10 months ago

If x=2+√3 then x+1/x is​

Answers

Answered by Anonymous
2

GIVEN:-

  • if \rm{ x = 2 + \sqrt{3}}

TO FIND :-

  • The Value of \rm{x + \dfrac{1}{x}}

HOW TO SOLVE :-

  • we will Rationalise the Denominator form.

Now,

\implies\rm{ x = 2 + \sqrt{3}}

\implies\rm{ \dfrac{1}{x} = \dfrac{1}{2 + \sqrt{3}}}

\implies\rm{ \dfrac{1}{x} = \dfrac{1}{2 + \sqrt{3}} \times{\dfrac{2 - \sqrt{3}}{2 - \sqrt{3}}}}

\implies\rm{\dfrac{2 - \sqrt{3}}{(2)^2 - (\sqrt{3})^2}}

\implies\rm{ 2 - \sqrt{3}}.

Therefore,

\implies\rm{ x + \dfrac{1}{x} = 2 + \sqrt{3} + 2 - \sqrt{3}}

\implies\rm{ x + \dfrac{1}{x}  = 4}.

Hence, The Value of x + 1/x is 4.

SOME ALGEBRAIC IDENTITIES.

  • (a+b)² = a² + 2ab + b²

  • (a-b)² = a² - 2ab + b²

  • a³ + b³ = (a+b) (a²-ab+b²).

  • a³ - b³ = (a-b) (a²+ab+b²).
Answered by gnanasekar205
2

Step-by-step explanation:

X=2√3

1/x=1/(2+√3)*(2-√3)/(2-√3)

1/x=(2-√3)/(4-3)

[(a-b)(a+b)=(√a-√b)]

1/x=(2-√3)

now,

x+1/x=(2+√3)+(2-√3)

x+1/x=2+2+√3-√3

x+1/x=4

Similar questions