Math, asked by Teihvang, 22 days ago

if x=2+√3 then x-1/x is equal to​

Answers

Answered by mamtameena18480
1

Answer:

YOUR FULL ANSWER//////(~o~)

Step-by-step explanation:

\sf{GIVEN:-}GIVEN:−

x = 2 + √3

1/x = 1/(2 + √3) * (2 - √3)/(2 - √3)

1/x = (2 - √3)/(4 - 3)

[ (a - b)(a + b) = (a² - b²) ]

1/x = (2 - √3)

now,

x + 1/x = (2 + √3) + (2 - √3)

x + 1/x = 2 + 2 + √3 - √3

x + 1/x = 4

Answered by sandy1816
0

given

x = 2 +  \sqrt{3}

we can Write

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\

rationalizing denominator we get

 \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{x}  = 2 -  \sqrt{3}

Now

x - \frac{1}{x}  = 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\  \\ x -  \frac{1}{x}  = 2 \sqrt{3}

Similar questions