Math, asked by shagandeepkaur, 1 year ago

if x^2/3 + y^2/3 =2 ,find dy/dx at (1,1)

Attachments:

Answers

Answered by uxmanchaudhry786
14

Answer:

Step-by-step explanation:

x^2/3 +y^2/3=2

differentiating both sides w.r.t  x

d/dx(x^2/3 +y^2/3)=d/dx(2)

2/3 x^-1/3 + (2/3 y^-1/3) dy/dx=0

(2/3 y^-1/3) dy/dx= -2/3 x^-1/3

dy/dx=(-2/3 x^-1/3)/(2/3 y^-1/3)

dy/dx=  (- y^1/3 ) / ( x^1/3)

dy/dx (1,1)= -(1)^1/3/ 1()^1/3

dy/dx(1,1)=  -1      (answer)

Answered by sandy1816
7

{x}^{ \frac{2}{3} }  +  {y}^{ \frac{2}{3} }  = 2 \\ differentiate \:  \: w.r.t \:  \:  \: x \\  \frac{2}{3}  {x}^{ -  \frac{1}{3} }  +  \frac{2}{3}  {y}^{ -  \frac{1}{3} }  \frac{dy}{dx}  = 0 \\ \implies  {y}^{ -  \frac{1}{3} }  \frac{dy}{dx}  =  -  {x}^{ -  \frac{1}{3} }  \\  \implies \frac{dy}{dx}  =  -  \frac{ {x}^{ -  \frac{1}{3} } }{ {y}^{ -  \frac{1}{3} } }  \\  \implies \frac{dy}{dx}  =  -  \frac{ {y}^{ \frac{1}{3} } }{ {x}^{ \frac{1}{3} } }  \\  \implies \frac{dy}{dx}  =  -  \sqrt[3]{ \frac{y}{x} }  \\ at \:  \: (1 \: , \: 1) \\  \frac{dy}{dx}  =  -  \sqrt[3]{ \frac{1}{1} }  \\  \frac{dy}{dx}  =  - 1

Similar questions