Math, asked by sasishreya73, 9 days ago

if x+2,3x+2 and 7x-2 are three terms of an AP . write its algebric expression​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm \: x + 2, \: 3x + 2, \: 7x - 2 \: are \: in \: AP -  -  -  - (1) \\

We know, three numbers a, b, c are in AP iff

\boxed{\sf{  \:\rm \: b - a \:  =  \: c - b \:  \: }} \\

So, using this result, we get

\rm \: 3x + 2 - (x + 2) = 7x - 2 - (3x + 2) \\

\rm \: 3x + 2 - x  -  2 = 7x - 2 - 3x  -  2 \\

\rm \: 2x = 4x - 4 \\

\rm \: 2x  -  4x =  - 4 \\

\rm \:  -  2x =  - 4 \\

\rm\implies \:x = 2 \\

Thus, on substituting the value of x in equation (1), we have

\rm \: 2 + 2, \: 3(2) + 2, \: 7(2) - 2 \: are \: in \: AP  \\

\rm \: 4, \: 6 + 2, \: 14 - 2 \: are \: in \: AP  \\

\rm \: 4, \: 8, \: 12 \: are \: in \: AP  \\

So, it means,

First term of an AP series, a = 4

Common difference of an AP series, d = 8 - 4 = 4

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ general term or nᵗʰ term of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\:a\:+\:(n\:-\:1)\:d}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Tʜᴜs,

↝ general term or nᵗʰ term is,

\rm \: a_n = a + (n - 1)d \\

On substituting the values of a and d, we get

\rm \: a_n = 4 + (n - 1)4 \\

\rm \: a_n = 4 + 4n - 4 \\

\rm\implies \:a_n \:  =  \: 4n \:  \\

Hence,

The general algebraic expression is

\rm\implies \: \boxed{\sf{  \:\rm \:  \:a_n \:  =  \: 4n \:  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

↝ Sum of n  terms of an arithmetic progression is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{n}{2} \bigg(2 \:a\:+\:(n\:-\:1)\:d \bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

d is the common difference.

Similar questions