Math, asked by renumehra50, 1 year ago

if x^2-3x+2is factor of x^4-ax^2+b find the value of a,b​

Answers

Answered by waqarsd
1

 \large{ \bold{p(x) =  {x}^{2}  - 3x + 2}} \\  \\  \large{ \bold{p(x) =  {x}^{2}  - x - 2x + 2 }}\\  \\  \large{ \bold{p(x) = x(x - 1) - 2(x - 1) }}\\  \\   \large{ \bold{p(x) = (x - 1)(x  - 2)}} \\  \\  \large{ \bold{also}} \\  \\  \large{ \bold{f(x) =  {x}^{4}  - a {x}^{2}  + b}} \\  \\  \large{ \bold{given}} \\  \\  \large{ \bold{p(x) \: is \: a \: factor \: of \: p(x)}} \\  \\  =  >  \large{ \bold{f(1) = 0 \:  \:  \: and \:  \:  \: f(2) = 0}} \\  \\  =  >  \large{ \bold{f(1) =  {1}^{4}  - (a ){1}^{2}  + b}} \\  \\  =  >  \large{ \bold{1 - a + b = 0}} \\  \\  =  >  \large{ \bold{a - b = 1}} \\  \\  \large{ \bold{and}} \\  \\  =  >  \large{ \bold{f(2) =  {2}^{4}  - (a) {2}^{2}  + b}} \\  \\  =  >  \large{ \bold{16 - 4a + b = 0}} \\  \\  =  >  \large{ \bold{4a - b =  - 16}} \\  \\  =  >  \large{ \bold{3a + a - b =  - 16}} \\  \\  =  >  \large{ \bold{3a =  - 17}} \\  \\  =  >  \large{ \bold{a =  -  \frac{17}{3} }}  \\  \\ =  >  \large{ \bold{b =  -  \frac{20}{3} }} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \color{red}{\boxed{\large{ \bold{hope \: it \: helps}}}}

Answered by Needthat
0

 \large{ \bold{p(x) =  {x}^{2}  - 3x + 2}} \\  \\  \large{ \bold{p(x) =  {x}^{2}  - x - 2x + 2 }}\\  \\  \large{ \bold{p(x) = x(x - 1) - 2(x - 1) }}\\  \\   \large{ \bold{p(x) = (x - 1)(x  - 2)}} \\  \\  \large{ \bold{also}} \\  \\  \large{ \bold{f(x) =  {x}^{4}  - a {x}^{2}  + b}} \\  \\  \large{ \bold{given}} \\  \\  \large{ \bold{p(x) \: is \: a \: factor \: of \: p(x)}} \\  \\  =  >  \large{ \bold{f(1) = 0 \:  \:  \: and \:  \:  \: f(2) = 0}} \\  \\  =  >  \large{ \bold{f(1) =  {1}^{4}  - (a ){1}^{2}  + b}} \\  \\  =  >  \large{ \bold{1 - a + b = 0}} \\  \\  =  >  \large{ \bold{a - b = 1}} \\  \\  \large{ \bold{and}} \\  \\  =  >  \large{ \bold{f(2) =  {2}^{4}  - (a) {2}^{2}  + b}} \\  \\  =  >  \large{ \bold{16 - 4a + b = 0}} \\  \\  =  >  \large{ \bold{4a - b =  - 16}} \\  \\  =  >  \large{ \bold{3a + a - b =  - 16}} \\  \\  =  >  \large{ \bold{3a =  - 17}} \\  \\  =  >  \large{ \bold{a =  -  \frac{17}{3} }}  \\  \\ =  >  \large{ \bold{b =  -  \frac{20}{3} }} \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \color{blue}{\boxed{\large{ \bold{hope \: it \: helps}}}}

Similar questions