Math, asked by valdezleoris, 1 year ago

if (x^2-4) is a factor of ax^4 +bx^3 +cx^2+dx+e then d =

Answers

Answered by hukam0685
0
put the value of from factor into the polynomial
 {x}^{2}  - 4 = 0 \\  {x}^{2}  = 4 \\ x =  \sqrt{4}  =  + 2 \:  \:  \: and \:  - 2
put value x= 2
a \times {2}^{4}  + b \times {2}^{3} +c \times  {2}^{2} + \\ d \times 2 +e
16a + 8b + 4c + 2d + e = 0
for X= -2
16a - 8b + 4c - 2d + e = 0
on subtracting both equations we get
16b + 4d = 0 \\ 4d =  - 16b \\ d =  - 4b \:  \:  \:  \:  \:  \: answer


Answered by sargamkashyap
6

Since x2 - 1 = (x - 1) is a factor of

p(x) = ax4 + bx3 + cx2 + dx + e

∴ p(x) is divisible by (x+1) and (x-1) separately

⇒ p(1) = 0 and p(-1) = 0

p(1) = a(1)4 + b(1)3 + c(1)2 + d(1) + e = 0

⇒ a + b + c + d + e = 0 ---- (i)

Similarly, p(-1) = a (-1)4 + b (-1)3 + c (-1)2 + d (-1) + e = 0

⇒ a - b + c - d + e = 0

⇒ a + c + e = b + d ---- (ii)

Putting the value of a + c + e in eqn , we get

a + b + c + d + e = 0

⇒ a + c + e + b + d = 0

⇒ b + d + b + d = 0

⇒ 2(b+d) = 0

⇒ b + d = 0 ---- (iii)

comparing equations (ii) and (iii) , we get

a + c + e = b + d = 0

\huge\red{brainliest\:plz}

Similar questions