Math, asked by ms9505466, 8 months ago

if x^2 +(4/x^2)=5 find the value of x^3+(8/x^3)
answer this question... ​

Answers

Answered by MominurFromDinajpur
1

Answer:

9

Step-by-step explanation:

The Given Equation is:

      x^{2} +\frac{4}{x^{2} } =5

Or, x^{2} +\frac{2^{2} }{x^{2} } =5

Or, (x)^{2} +(\frac{2}{x })^{2}  =5

Or, (x+\frac{2}{x} )^{2} -2*x*\frac{2}{x} = 5      [a^{2} +b^{2} =(a+b)^{2} -2ab]

Or, (x+\frac{2}{x} )^{2} -4 = 5

Or, (x+\frac{2}{x} )^{2}  = 5+4

Or, (x+\frac{2}{x} )^{2} = 9

Or, (x+\frac{2}{x} )^{2} = 3^{2}

Or, x+\frac{2}{x} =3

The Given Statement is:

  x^{3} + \frac{8}{x^{3} }

= x^{3} + \frac{2^{3} }{x^{3} }

= (x)^{3} +(\frac{2}{x}) ^{3}

= (x+\frac{2}{x} )^{3} -3*x*\frac{2}{x} * (x+\frac{2}{x} )     [(a+b )^{3} -3ab(a+b )]

= (x+\frac{2}{x} )^{3} -6 (x+\frac{2}{x} )

= 3^{3} -6* 3      [x+\frac{2}{x} =3]

= 27-18

= 9   (ans)

Hope you understand the process...

By- Md. Mominur Islam Mahim.

Similar questions