Math, asked by riyasuhasbadhe, 1 month ago

If x^2-4x+1=0, find: (i) x+1/x and (ii) x^3+1/x^3

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\: {x}^{2} - 4x + 1 = 0

can be rewritten as

\rm :\longmapsto\: {x}^{2} + 1 = 4x

On dividing both sides by x, we get

\rm :\longmapsto\:\dfrac{ {x}^{2} + 1}{x} = 4

\rm :\longmapsto\:\dfrac{ {x}^{2}}{x}  + \dfrac{1}{x} = 4

\rm :\longmapsto\:x  + \dfrac{1}{x} = 4

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: x  + \dfrac{1}{x} = 4}}}

On Cubing both sides, we get

\rm :\longmapsto\: {\bigg[x + \dfrac{1}{x} \bigg]}^{3} =  {4}^{3}

We know,

 \red{\boxed{ \tt{ \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y) \: }}}

So, using this identity, we get

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} } + 3 \times x \times \dfrac{1}{x}\bigg[x + \dfrac{1}{x} \bigg] = 64

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} } + 3  \times 4= 64

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} } + 12= 64

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} }= 64 - 12

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} }= 52

Hence,

 \red{\rm :\longmapsto\: \boxed{ \tt{ \: {x}^{3} + \dfrac{1}{ {x}^{3} }= 52 \: }}}

More Identities to know :-

 \blue{\boxed{ \tt{ \:  {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2} \: }}}

 \blue{\boxed{ \tt{ \:  {(x  -  y)}^{2} =  {x}^{2}  -  2xy +  {y}^{2} \: }}}

 \red{\boxed{ \tt{ \:  {(x + y)}^{3} =  {x}^{3} +  {y}^{3} + 3xy(x + y) \: }}}

 \red{\boxed{ \tt{ \:  {(x  -  y)}^{3} =  {x}^{3}  -   {y}^{3}  -  3xy(x  -  y) \: }}}

 \green{\boxed{ \tt{ \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y) \: }}}

 \green{\boxed{ \tt{ \:{x}^{3} + {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})\: }}}

 \green{\boxed{ \tt{ \:{x}^{3}  -  {y}^{3} = (x  -  y)( {x}^{2}  +  xy +  {y}^{2})\: }}}

 \green{\boxed{ \tt{ \:{x}^{4}- {y}^{4} = (x  -  y)(x + y)( {x}^{2}+{y}^{2})\: }}}

Similar questions