Math, asked by tdydygu, 1 year ago

If x^2-4x= 1, find x^2+1/x^2​

Answers

Answered by Anonymous
11

\mathfrak{\large{\underline{\underline{Answer:-}}}}

\boxed{\sf{x^2 + \dfrac{1}{x^2} = 18}}

\mathfrak{\large{\underline{\underline{Explanation:-}}}}

Given :- \sf{x^2 - 4x = 1}

To find :- \sf{x^2 + \dfrac{1}{x^2}}

Solution :-

 {x}^{2} - 4x = 1

It can be written as :-

x(x - 4) = 1

x - 4 = \dfrac{1}{x}

x - 4 - \dfrac{1}{x} = 0

x -  \dfrac{1}{x} = 4

Now squaring on both the sides

 {(x -  \dfrac{1}{x})}^{2} =  {4}^{2}

We know that, (x - y)² = x² + y² - 2xy

Here x = x, y = 1/x

By substituting the values in the identity we have :-

 {x}^{2} + \dfrac{1}{ {x}^{2} } - 2(x)( \dfrac{1}{x}) = 16

 {x}^{2} +  \dfrac{1}{ {x}^{2} } - 2 = 16

 {x}^{2} + \dfrac{1}{ {x}^{2} } = 16 + 2

 {x}^{2} + \dfrac{1}{ {x}^{2} } = 18

\Huge{\boxed{\sf{x^2 + \dfrac{1}{x^2} = 18}}}

\mathfrak{\large{\underline{\underline{Identity \: Used:-}}}}

(x - y)² = x² + y² - 2xy

\mathfrak{\large{\underline{\underline{Extra \: Information:-}}}}

1. (x + y)² = x² + y² + 2xy

2. (x - y)² = x² + y² - 2xy

3. (x + y)(x - y) = x² - y²

4. (x + a)(x + b) = x² + (a + b)x + ab

5. (x + y)³ = x³ + y³ + 3xy(x + y)

6. (x - y)³ = x³ - y³ - 3xy(x - y)

7. x³ + y³ = (x + y)(x² - xy + y²)

8. x³ - y³ = (x - y)(x² + xy + y²)

9. (x + y + z)² = x² + y² + z² + 2xy + 2yz + 2xz

10. (x + y + z)(x² + y² + z² - xy - yz - xz) = x³ + y³ + z³ - 3xyz


BitByBitGigaBit: hey plz inbox ^_^
Similar questions