if x =(2+√5)1/2+(2-√5)1/2 and y =(2+√5)1/2-(2-√5)1/2 then evaluate x^2+y^2
Answers
Answer:
Step-by-step explanation:
Using the maths property:
(a+b)(a-b) = ;
x = (2+√5)1/2+(2-√5)1/2
Taking 1/2 as common;
x = (1/2) [(2+√5)+(2-√5)] = (1/2) [2+2];
x = 2;
y = (2+√5)1/2-(2-√5)1/2;
Taking 1/2 as common;
y = (1/2) [2+√5 - 2+√5]
y = (1/2) [2√5] = √5;
x^2+y^2 = 4+5 = 9
X=(2+√5)1/2+(2-√5)1/2
X=(2+√5)1/2+(2-√5)1/2x^2={(2+√5)1/2+(2-√5)1/2}^2
X=(2+√5)1/2+(2-√5)1/2x^2={(2+√5)1/2+(2-√5)1/2}^2 ={√(2+√5)^2}+2*√(2+√5)*√(2-√5)+√(2-√5)^2}
=2+√5+2-√5+2*2+√5+2-√5
=4+8=12
y=(2+√5)1/2-(2-√5)1/2
y=(2+√5)1/2-(2-√5)1/2y^2={(2+√5)1/2-(2-√5)1/2}^2
y=(2+√5)1/2-(2-√5)1/2y^2={(2+√5)1/2-(2-√5)1/2}^2 ={√(2+√5)^2}-2*√(2+√5)*√(2-√5)+√(2-√5)^2}
y=(2+√5)1/2-(2-√5)1/2y^2={(2+√5)1/2-(2-√5)1/2}^2 ={√(2+√5)^2}-2*√(2+√5)*√(2-√5)+√(2-√5)^2} =2+√5+2-√5-2*2+√5+2-√5
y=(2+√5)1/2-(2-√5)1/2y^2={(2+√5)1/2-(2-√5)1/2}^2 ={√(2+√5)^2}-2*√(2+√5)*√(2-√5)+√(2-√5)^2} =2+√5+2-√5-2*2+√5+2-√5 =4-8=-4
x^2+y^2=12+(-4)=8
HOPE THIS WILL HELP YOU.