Math, asked by varunthakur8b35, 4 hours ago

. If x = 2√5 + √3 and y = 2√5 - √3, evaluate x2 + y2
whole explanation​

Answers

Answered by varadad25
3

Answer:

\displaystyle{\boxed{\red{\sf\:x^2\:+\:y^2\:=\:46\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:x\:=\:2\:\sqrt{5}\:+\:\sqrt{3}\:\&}

\displaystyle{\sf\:y\:=\:2\:\sqrt{5}\:-\:\sqrt{3}}

We have to find the value of x² + y².

Now, we know that,

\displaystyle{\pink{\sf\:x^2\:+\:y^2\:=\:(\:x\:+\:y\:)^2\:-\:2\:xy}}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:=\:(\:2\:\sqrt{5}\:+\:\cancel{\sqrt{3}}\:+\:2\:\sqrt{5}\:-\:\cancel{\sqrt{3}}\:)^2\:-\:2\:\times\:(\:2\:\sqrt{5}\:+\:\sqrt{3}\:)\:(\:2\:\sqrt{5}\:-\:\sqrt{3}\:)}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:=\:(\:4\:\sqrt{5}\:)^2\:-\:2\:\times\:[\:(\:2\:\sqrt{5}\:)^2\:-\:(\:\sqrt{3}\:)^2\:]\:\quad\:\dots\:[\:(\:a\:+\:b\:)\:(\:a\:-\:b\:)\:=\:a^2\:-\:b^2\:]}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:=\:16\:\times\:5\:-\:2\:\times\:[\:(\:4\:\times\:5\:)\:-\:(\:3\:)\:]}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:=\:80\:-\:2\:\times\:(\:20\:-\:3\:)}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:=\:80\:-\:2\:\times\:17}

\displaystyle{\implies\sf\:x^2\:+\:y^2\:=\:80\:-\:34}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x^2\:+\:y^2\:=\:46\:}}}}

Answered by brainlylegend28
1

x²+y³= 46 is the correct answer....

Similar questions