Math, asked by sriramulumca2299, 10 months ago

If [x=2+√5] find the value of x^2+1/x^2

Answers

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{x^{2}+\frac{1}{x^{2}}=18}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies x = 2 +  \sqrt{5}  \\  \\  \red{\underline \bold{To \: Find : }} \\  \tt:  \implies  {x}^{2}  +  \frac{1}{ {x}^{2} }  =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies   {x}^{2}  = ( 2 + \sqrt{5} )^{2}  \\  \\ \tt:  \implies   {x}^{2}  = {2}^{2}   +  ({ \sqrt{5} })^{2}  + 4 \sqrt{5}  \\  \\ \tt:  \implies   {x}^{2}  = 4 + 5 + 4 \sqrt{5}  \\  \\ \tt:  \implies   {x}^{2}  =9 + 4 \sqrt{5}  -  -  -  -  - (1) \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{1}{ {x}^{2} }  =  \frac{1}{(2 +  \sqrt{5})^{2}  }  \\  \\  \tt:  \implies  \frac{1}{ {x}^{2} }  = \frac{1 }{9 + 4 \sqrt{5} }  \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\  \tt:  \implies  \frac{1}{ {x}^{2} }  = \frac{9 - 4 \sqrt{5} }{ {9}^{2}  - {(4 \sqrt{5}) }^{2} }  \\  \\  \tt:  \implies  \frac{1}{ {x}^{2} }  = \frac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\  \tt:  \implies  \frac{1}{ {x}^{2} }  =9 - 4 \sqrt{5}-----(2)  \\  \\  \bold{For \: finding \: value :   } \\  \tt:  \implies  {x}^{2}   + \frac{1}{ {x}^{2} }  =9 + 4 \sqrt{5} +   9  - 4 \sqrt{5}  \\  \\  \tt:  \implies   {x }^{2}  + \frac{1}{ {x}^{2} }  =9 + 9 \\  \\   \green{\tt:  \implies   {x}^{2}  + \frac{1}{ {x}^{2} }  =18}

Answered by ItzArchimedes
27

GiveN:

  • x = 2 + √5

To FinD:

  • x² + 1/x²

SoLuTiOn:

→ x² + 1/x²

Substituting the value of x

→ (2 + √5)² + 1/(2 + √5)²

Using

(a + b)² = a² + 2ab + b²

→ 2² + 2(2)(√5) + (√5)² + 1/2² + 2(2)(√5) + (√5)²

→ 4 + 4√5 + 5 + 1/4 + 4√5 + 5

→ 9 + 4√5 + 1/9 + 4√5

→ (9 + 4√5)² + 1/9 + 4√5

Using the same formula

→ 9² + 2(9)(4√5) + (4√5)² + 1/9 + 4√5

→ 81 + 72√5 + 16(5) + 1/9 + 4√5

→ 162 + 72√5/9 + 4√5

Taking common

→ 18(9 + 4√5)/9 + 4√5

→ 18

Hence , + 1/ = 18

Similar questions