if x=2+√5 find x^2-1/x^2
Answers
Answer:
If x= 2+sqrt3
If x= 2+sqrt3then
If x= 2+sqrt3then1/x=2-sqrt3 (by rationaliztion)
If x= 2+sqrt3then1/x=2-sqrt3 (by rationaliztion)then (x+1/x)^2 = X^2+(1/X)^2 +2*x*(1/X)
If x= 2+sqrt3then1/x=2-sqrt3 (by rationaliztion)then (x+1/x)^2 = X^2+(1/X)^2 +2*x*(1/X)that is (2+sqrt3 +2-sqrt3)^2=x^2 +(1/x)^2+2
If x= 2+sqrt3then1/x=2-sqrt3 (by rationaliztion)then (x+1/x)^2 = X^2+(1/X)^2 +2*x*(1/X)that is (2+sqrt3 +2-sqrt3)^2=x^2 +(1/x)^2+24^2 -2=x^2+(1/x)^2
If x= 2+sqrt3then1/x=2-sqrt3 (by rationaliztion)then (x+1/x)^2 = X^2+(1/X)^2 +2*x*(1/X)that is (2+sqrt3 +2-sqrt3)^2=x^2 +(1/x)^2+24^2 -2=x^2+(1/x)^2i.e, 14 is the answer
Step-by-step explanation:
= 2+root5
x2 = (2+root5)2 =9 +4root5 {using identity (a+b)2}
1/x2 = (1/2+root5 )2 =1/9 +4root5
so x2 +1/x2 = 9+4root5 + 1/9+4root5
=9+4root5 + 9- 4 root5
(9)2 - (4root5)2
=9 +4root5 +9 -4root5
1
9+4root5 +9 - 4root5 =18
thus x2 +1/x2 =18 proved