Math, asked by pooja497, 1 year ago

If x =2+√5 find x power 2 +1÷x power 2

Answers

Answered by DaIncredible
0
Hey friend,
Here is the answer you were looking for:
x = 2 +  \sqrt{5}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{5} }  \\

On rationalizing the denominator we get,

 \frac{1}{x} =  \frac{1}{2 +  \sqrt{5} }   \times \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }  \\

Using the identity :

(x +y)(x - y) =  {x}^{2}   -  {y}^{2}

 \frac{1}{x}  =  \frac{2 -  \sqrt{5} }{ {(2)}^{2} -  {( \sqrt{5} )}^{2}  }  \\  \\   \frac{1}{x}  =  \frac{2 -  \sqrt{5} }{4 - 5}  \\  \\  \frac{1}{x}  =  - 2 +  \sqrt{5}  \\  \\ x +  \frac{1}{x}  = (2 +  \sqrt{5} ) + ( - 2 +  \sqrt{5} ) \\  \\ x +  \frac{1}{x}  = 2 +  \sqrt{5}  - 2 +  \sqrt{5}  \\  \\ x +  \frac{1}{x}  = 2 \sqrt{5}   \\

Squaring both the sides :

 {(x +  \frac{1}{x}) }^{2}  =  {(2 \sqrt{5}) }^{2}  \\  \\  {x}^{2}   +  {( \frac{1}{x} )}^{2}  + 2 \times x \times  \frac{1}{x}  = 20 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 20 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 20 - 2 \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 18


Hope this helps!!

If you have any doubt regarding to my answer, feel free to ask in the comment section or inbox me if needed.

@Mahak24

Thanks...
☺☺
Similar questions