Math, asked by emma18, 1 year ago

If x=2+√5 , prove that x^(2)+1/x^(2)=18

Answers

Answered by AJAYMAHICH
88
x = 2+root5

x2 = (2+root5)2 =9 +4root5 {using identity (a+b)2}

1/x2  = (1/2+root5 )2  =1/9 +4root5 

so x2 +1/x2    = 9+4root5 + 1/9+4root5

                      =9+4root5 + 9- 4 root5 

                                          (9)2  - (4root5)2

                      =9 +4root5 +9 -4root5 

                                             1

                     9+4root5 +9 - 4root5  =18

thus x2 +1/x2 =18 proved


emma18: Thank you so much!! @AJAYMAHICH . Ace
Answered by BrainlyQueen01
339
Hey mate!

_______________________

Given :

x = 2 +  \sqrt{5}

To prove :

x {}^{2}  +  \frac{1}{x {}^{2} }  = 18

Proof :

x = 2 +  \sqrt{5}  \\  \\ x {}^{2}  = (2 +  \sqrt{5} ) {}^{2}  \\  \\ x {}^{2}  = 2 {}^{2}  +  \sqrt{5}  {}^{2}  + 2 \times 2 \times  \sqrt{5}  \\  \\ x {}^{2}  = 4 + 5 + 4 \sqrt{5}  \\  \\ x {}^{2}  = 9 + 4 \sqrt{5}


Now,

 \frac{1}{x {}^{2} }  =  \frac{1}{9  + 4 \sqrt{5} }  \\  \\ \frac{1}{x {}^{2} }  =  \frac{1}{9  + 4 \sqrt{5} } \times  \frac{9 - 4 \sqrt{5} }{9 - 4 \sqrt{5} }  \\  \\  \frac{1}{x {}^{2} }  =  \frac{9 - 4 \sqrt{5} }{(9) {}^{2} - (4 \sqrt{5}) {}^{2} }  \\  \\  \frac{1}{x {}^{2} }  =  \frac{9 - 4 \sqrt{5} }{81 - 80}  \\  \\  \frac{1}{x {}^{2} }  = 9 - 4 \sqrt{5}

So,

x {}^{2}  +  \frac{1}{x {}^{2} }   = 9 + \cancel {4 \sqrt{5}}  + 9 -  \cancel{4 \sqrt{5}}  \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} } = 9 + 9 \\  \\ x {}^{2}  +  \frac{1}{x {}^{2} } = 18


Hence, it is proved.

_______________________

Thanks for the question !

☺️☺️☺️
Similar questions