Math, asked by nandkumar1976s, 8 months ago

If x=2/5 ,y=-4/3 ,z=8/9 ,then verify the following relation :x+(y+z)=(x+y)+z​

Answers

Answered by NitaTewaricherti
1

118/45=118/45. it will help you thanks......

Answered by pulakmath007
10

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO VERIFY

 \displaystyle \sf{ x + (y + z) = (x + y) + z \:  \:  \: for \: x =  \frac{2}{5} , y =  -  \frac{4}{3} , z =  \frac{8}{9}   }

CALCULATION

LHS

 =  \sf{x + (y + z)}

 \displaystyle \sf{=  \frac{2}{5} +  \bigg( \:   -  \frac{4}{3} +  \frac{8}{9}  \bigg) }

 \displaystyle \sf{=  \frac{2}{5} +  \bigg( \:    \frac{ - 12 + 8}{9}  \bigg) }

 \displaystyle \sf{=  \frac{2}{5} -  \frac{4}{9}  }

 \displaystyle \sf{=  \frac{18 - 20}{45}  }

 \displaystyle \sf{=   - \frac{2}{45}  }

RHS

 \displaystyle \sf{=(x + y) + z   }

 \displaystyle \sf{= \bigg(  \frac{2}{5} \:   -  \frac{4}{3}  \bigg)+  \frac{8}{9}   }

 \displaystyle \sf{= \bigg(  \frac{6 - 20}{15} \:     \bigg)+  \frac{8}{9}   }

 \displaystyle \sf{= -  \frac{14}{15} +  \frac{8}{9}   }

 \displaystyle \sf{=  \frac{ - 42 + 40}{45}  }

 \displaystyle \sf{=   - \frac{ 2}{45}  }

Therefore LHS = RHS

Hence Verified

━━━━━━━━━━━━━━━━

ADDITIONAL INFORMATION

The above mentioned property is ASSOCIATIVE PROPERTY UNDER ADDITION FOR THE SET OF REAL NUMBERS

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Show that the set Q+ of all positive rational numbers forms an abelian group under the operation * defined by a*b= 1/2(ab)

https://brainly.in/question/21467351

Similar questions